
Variance Shadow Maps

William Donnelly∗ Andrew Lauritzen†

Computer Graphics Lab, School of Computer Science, University of Waterloo

Figure 1: Comparison of anisotropic filtering vs. no anisotropic filtering. Top: Regular shadow map with bilinear percentage
closer filtering. Bottom: Variance shadow map with mipmapping and 16x anisotropic filtering.

Abstract

Shadow maps are a widely used shadowing technique in real
time graphics. One major drawback of their use is that they
cannot be filtered in the same way as color textures, typi-
cally leading to severe aliasing. This paper introduces vari-
ance shadow maps, a new real time shadowing algorithm.
Instead of storing a single depth value, we store the mean
and mean squared of a distribution of depths, from which
we can efficiently compute the variance over any filter re-
gion. Using the variance, we derive an upper bound on the
fraction of a shaded fragment that is occluded. We show
that this bound often provides a good approximation to the
true occlusion, and can be used as an approximate value for
rendering. Our algorithm is simple to implement on current
graphics processors and solves the problem of shadow map
aliasing with minimal additional storage and computation.

CR Categories: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture

Keywords: real-time rendering, shadow maps, shader pro-
gramming, graphics hardware

∗e-mail: wdonnelly@math.uwaterloo.ca
†e-mail: atlaurit@cgl.uwaterloo.ca

1 Introduction

Shadow maps [Williams 1978] and shadow volumes [Crow
1977] are the two most common shadowing algorithms used
in real time applications. Shadow maps have many advan-
tages compared to shadow volumes; for example they are
easy to implement, their cost is less sensitive to geometric
complexity and they can be queried at arbitrary locations.

Unfortunately, like most textures, shadow maps suffer
from aliasing if not filtered properly. Modern graphics hard-
ware provides built-in methods to reduce texture aliasing on
color textures: namely mipmapping and anisotropic filter-
ing. These techniques are inapplicable to standard shadow
maps, since they will simply interpolate the depths of neigh-
boring pixels. Typically real time implementations use
nearest-neighbor sampling of shadow maps, or take several
samples and average the results. This method is expensive,
causes aliasing and does not take full advantage of graphics
hardware’s aforementioned fast, built-in filtering capabili-
ties.

To address the problem of efficiently filtering shadow
maps, we note that each texel of a standard shadow map can
only represent the depth of a single point. Variance shadow
maps improve on this scheme by representing a distribution
of depths at each texel. To approximate such a distribution
using a small amount of data, we store the first and second
moments: the mean depth and mean squared depth. One
major advantage of this representation is that we can ap-
proximate the average of two distributions by averaging the
moments.

When querying the variance shadow map, we use the mo-
ments to compute a bound on the fraction of the distribu-
tion that is more distant than the surface being shaded. We
show that this bound provides a good approximation for the
amount of light reaching any given surface, and therefore
can be used for rendering correctly anti-aliased shadows.



Because the moments can be interpolated, we can make
use of the wide range of filtering techniques that are available
for color textures, effectively eliminating aliasing.

• Reduces aliasing on shadow maps by enabling the
use of filtering techniques such as mipmapping and
anisotropic filtering,

• Allows shadow maps to be pre-filtered for percentage
closer filtering, and

• Can be implemented on current graphics hardware at
a cost comparable to that of ordinary shadow maps.

2 Related Work

Williams introduced shadow maps [Williams 1978] as an ef-
ficient algorithm for computing shadows in general scenes.
However, he points out that the usual filtering techniques
for color textures cannot be applied to depth values.

Percentage closer filtering [Reeves et al. 1987] provides a
solution to the problem of shadow map aliasing. The key
insight is that a correct filtering algorithm needs to filter
the results of the depth comparisons, instead of filtering
the depths. This is accomplished by randomly sampling
the shadow map, so many samples are required to eliminate
noise.

Deep shadow maps [Lokovic and Veach 2000] store a dis-
tribution of depths instead of a single depth at each pixel.
As a result, percentage closer filtering can be done as a
pre-process. Subsequently, each query requires a constant
amount of work independent of the filter size. However, deep
shadow maps are not particularly amenable to implementa-
tion on graphics hardware for two reasons: each pixel must
encode a piecewise linear function using a large amount of
data, and the procedure for averaging two distributions is
non-trivial.

Opacity shadow maps [Kim and Neumann 2001] encode a
distribution of depths, but use a fixed amount of storage per
pixel. Each pixel stores a function just as in deep shadow
maps, but instead the function is constructed from its val-
ues at a fixed set of points. Thus the algorithm can take
advantage of the speed of graphics hardware. The price to
pay for this flexibility is extreme quantization of depths, so
the technique is mostly suitable for rendering of dense volu-
metric objects such as hair and fur.

An alternative approach to the problem of shadow map
aliasing is to alter the shadow map projection. This av-
enue was pursued in adaptive shadow maps [Fernando et al.
2001], perspective shadow maps [Stamminger and Drettakis
2002], light space perspective shadow maps [Wimmer et al.
2004] and trapezoidal shadow maps [Martin and Tan 2004].
Because we make no assumptions about the shadow projec-
tion, these approaches are compatible with variance shadow
maps; in fact, the two approaches are complementary.

Some graphics hardware has native support for shadow
maps, for example through the OpenGL ”GL ARB shadow”
extension. However, the extension does not specify be-
haviour with respect to interpolation or mipmapping.
Some NVIDIA graphics processors support bilinear filtering
[Everitt et al. 2000], but to our knowledge, no graphics hard-
ware supports trilinear or anisotropic filtering on shadow
maps.

3 Algorithm Overview

As with conventional shadow mapping, we first render the
scene from the light’s point of view. For shadow mapping, we
would render the depth as seen from the light; for variance
shadow maps we render into a two-channel buffer, render-
ing both the depth and the square of the depth. Although
in regular shadow mapping we would not want to use any
type of anti-aliasing when rendering from the light’s point of
view, anti-aliasing will actually be of benefit when rendering
variance shadow maps.

Once we have created the shadow map, we can do pre-
processing on the texture to facilitate filtering. This can
include generating mipmaps [Williams 1983] or computing
summed area tables [Crow 1984]. To further reduce alias-
ing and soften shadow edges we can also blur the variance
shadow map.

Since we have rendered depth and squared depth in the
texture, the result of filtering our texture will be to recover
the moments M1 and M2 over that filter region, defined as
follows:

M1 = E(x) =

∫ ∞

−∞
xp(x)dx (1)

M2 = E(x2) =

∫ ∞

−∞
x2p(x)dx (2)

From these we compute the mean µ and variance σ2:

µ = E(x) = M1 (3)

σ2 = E(x2)− E(x)2 = M2 −M2
1 (4)

The variance can be interpreted as a quantitative measure
of the width of a distribution. As a result, it should place a
bound on how much of the distribution can be concentrated
far away from the mean. This bound is stated precisely in
Chebyshev’s inequality:

Theorem 1 (Chebychev’s inequality, one-tailed version)
Let x be a random variable drawn from a distribution with
mean µ and variance σ2. Then for t > µ

P (x ≥ t) ≤ pmax(t) ≡ σ2

σ2 + (t− µ)2
(5)

The quantity P (x ≥ t) in equation 5 is exactly the quan-
tity we wish to compute in order to perform percentage
closer filtering, since it represents the fraction of pixels over
a filter region that will fail the depth comparison with a fixed
depth t.

However, equation 5 is only an upper bound; a priori there
is no reason to assume it will allow us to compute the true
value P (x ≥ t). It can, however, provide a good approxima-
tion, as we show in the following example.

3.1 Planar Occluders and Receivers

Consider the case of a single planar occluder at depth d1,
casting a shadow onto a planar surface at depth d2. Suppose
we have a fixed filter, where p is the percentage of the filter
that is unoccluded. Then we have:

µ = E(x) = pd2 + (1− p)d1

E(x2) = pd2
2 + (1− p)d2

1

σ2 = pd2
2 + (1− p)d2

1 − (pd2 + (1− p)d1)
2

= (p− p2)(d2 − d1)
2



Using these values, we can compute pmax according to
equation 5:

pmax(d2) =
σ2

σ2 + (µ− d2)2

=
(p− p2)(d2 − d1)

2

(p− p2)(d2 − d1)2 + (pd2 + (1− p)d1 − d2)2

=
(p− p2)(d2 − d1)

2

(p− p2)(d2 − d1)2 + (1− p)2(d2 − d1)2

=
p− p2

1− p
= p

Thus in this simple situation, we see that Chebyshev’s
inequality is an equality, and gives the exact result of per-
centage closer filtering.

Although this is a very particular situation, it actually
provides a reasonable approximation to a common situation
in many real scenes. In the case of a single occluder and
single receiver, we can take a small neighbourhood in which
the depth of the occluder and receiver are approximately
constant. In this case, equation 5 will not provide an ex-
act value, but a close approximation. Thus we use pmax in
rendering as an approximation to the true value p.

4 Implementation

We implemented variance shadow maps on a GeForce
6800GT using Sh [McCool and Du Toit 2004] and OpenGL.
Sh allows us to build the variance shadow mapping shader
on top of existing light shaders, and automatically combine
it with any of the surface shaders in the scene.

The GeForce 6 series supports filtering of 16-bit per com-
ponent floating point textures (fp16), so we use hardware
mipmapping and anisotropic filtering. Our implementation
is roughly as follows:

1. Render to a four component fp16 framebuffer object
from the light’s point of view1. In the fragment pro-
gram, output the depth and squared depth of the cur-
rent fragment to the framebuffer. We scale the depths
to be in the range [0,1] to avoid overflowing the fp16
numeric boundaries.

2. Optionally prefilter the shadow map using a two-pass
separable gaussian blur.

3. Have OpenGL automatically generate mipmaps.

4. Render the scene normally from the camera’s point of
view. In the fragment shader, read the shadow map
to get the moments M1 and M2. If the current frag-
ment has depth < µ, then the surface is unshadowed.
Otherwise, compute the variance from the first two mo-
ments (equation 4) and scale the light intensity by pmax

(equation 5).

In addition, we implemented a version using a 32-bit per
component shadow map. Since our hardware does not sup-
port filtering at that precision, we implemented bilinear fil-
tering in the fragment shader. In principle we could also

1We only need two components, but current hardware does not
support rendering to two component fp16 textures. Optionally
one could use multiple render targets instead of multiple compo-
nents.

Figure 2: Comparison of variance shadow mapping without
mipmapping (left) and with mipmapping (right).

Figure 3: Left to right: 1) standard shadow mapping, 2)
5x5 percentage closer filtering, 3) 5x5 bilinear percentage
closer filtering, 4) variance shadow maps with 5x5 separable
gaussian blur.

emulate mipmapping and anisotropic filtering with shader
code; in practice, this would run too slowly on current hard-
ware.

We also implemented the following alternate shadowing
methods for comparison. Each of them uses a single unfil-
tered fp16 component to store the occluder depth.

1. Simple shadow mapping using a single nearest neighbor
depth comparison.

2. Bilinear filtering of the neighboring four depth compar-
isons.

3. Percentage closer filtering with gaussian weights, each
sample being a nearest neighbor depth comparison.

4. Percentage closer filtering with gaussian weights, each
sample being the bilinear filtered result of the neigh-
boring four depth comparisons.

5 Results

Figure 2 shows the result of using mipmapping with variance
shadow maps. As with color textures, mipmapping effec-
tively reduces the aliasing of the shadow map when viewed
from a distance. Anisotropic filtering can also be used with
variance shadow maps, eliminating aliasing that occurs when
viewing surfaces at shallow angles (see Figure 1).



Figure 4: When the variance over a filter region is high, light
bleeding artifacts can occur. The circled region of the car’s
shadow should be solid black. Note that the contrast has
been increased here so that the artifact can be seen more
easily.

Figure 3 shows a side-by-side comparison of the results
of using a prefiltered variance shadow map, and an equiva-
lent percentage closer filter. As the figure demonstrates, the
output of these two methods is almost identical, and vastly
superier to simple shadow mapping and standard nearest
neighbor percentage closer filtering.

5.1 Light Bleeding

Our formula for pmax was derived as a lower bound on the
brightness, and although it works well in many situations,
it is not guaranteed to be an accurate approximation. We
can see from equation 5 that whenever the variance σ2 is
nonzero, pmax(d) > 0 for all d. When σ2 is small, pmax

goes to zero quickly, and so the effect is not very noticeable.
However, when σ2 is large the results can be noticeable as
seen in figure 4.

In practice, this is a only a problem for scenes with a high
depth complexity relative to the shadowed light source. For
scenes with a low depth complexity (eg. many scenes lit by
the sun), the artifacts are non-existent or negligible.

5.2 Performance

To compare the performance of several shadow mapping im-
plementations we chose a very simple scene with a single
spotlight, shown in Figure 1. Because all of the methods
examined operate in image space, their performance is inde-
pendent of geometric complexity.

The variance shadow map results used hardware mipmap-
ping, trilinear and 16x anisotropic filtering. Hardware tex-
ture filtering is inapplicable to the other algorithms2, and
thus any required filtering was implemented in the shader.

All measurements are in frames per second, taken on a
GeForce 6800GT. Rendering at a resolution of 1024x768 and
varying the shadow map size, the results are as follows:

2NVIDIA provides an extension to perform post-depth-
comparison bilinear filtering of shadow map lookups [Everitt et al.
2000]. We have not used this extension in our implementation,
but it should be noted that its usage may improve performance
on some platforms.

128x128 256x256 512x512 1024x1024
Shadow Map 340 334 314 243
Bil. PCF 1x1 224 219 209 175
VSM 265 255 228 154
PCF 3x3 153 151 149 130
Bil. PCF 3x3 22 22 22 21
VSM 3x3 254 225 154 63

We now fix the shadow map size at 512x512 and vary the
framebuffer resolution:

640x480 800x600 1024x768 1280x960
Shadow Map 470 470 314 210
Bil. PCF 1x1 457 309 209 133
VSM 450 334 228 159
PCF 3x3 336 229 149 92
Bil. PCF 3x3 53 33 22 15
VSM 3x3 230 195 154 119

Notice that the PCF results do not vary greatly with
shadow map size, but rather by the number of onscreen pix-
els. By contrast, the VSM results scale with the framebuffer
resolution at the same rate as standard shadow mapping.
However, when using a prefilter such as in the VSM 3x3
case, the variance shadow mapping performance scales with
the shadow map size.

5.3 Numerical Stability

Equation 4 for computing the variance is known to be numer-
ically unstable when using floating point arithmetic. This is
because when the variance is small compared to the average
depths we have E(x2) ≈ E(x)2 and so we are subtracting
two approximately equal large numbers, potentially result-
ing in loss of precision. In practice, we found that artifacts
were sometimes visible when using a 16-bit floating point
shadow map, but never with 32-bit floating point values.
The fp16 artifacts can be largely eliminated by splitting each
32-bit float into two 16-bit floats for storage (since we are
currently forced by the hardware to use a four component
texture anyways) and recombining them after the texture
lookup. Moreover, we expect future hardware to support
mipmapping and anisotropic filtering of 32-bit floating point
textures and thus resolve this issue.

6 Conclusions

We have introduced variance shadow maps as a simple and
effective solution to the problem of aliasing in shadow maps.
Our results are based on an upper bound on the result of per-
centage closer filtering based on the mean and variance of a
distribution of depths, which we showed provides a good ap-
proximation to percentage closer filtering. Finally, we have
shown that variance shadow maps can be implemented easily
on modern graphics hardware and compare favorably in both
performance and quality to existing real time techniques for
shadow map filtering.

Acknowledgements

We would like to thank Michael McCool and Stefanus Du
Toit for their helpful suggestions, and Chris Iacobucci for
the car model.



References

Crow, F. 1977. Shadow algorithms for computer graphics.
In Computer Graphics (Proc. SIGGRAPH), vol. 11, 242–
248.

Crow, F. C. 1984. Summed-area tables for texture map-
ping. H. Christiansen, Ed., vol. 18, 207–212. Held in
Minneapolis, Minnesota.

Everitt, C., Rege, A., and Cebenoyan, C. 2000. Hard-
ware shadow mapping. Tech. rep., NVIDIA Corp., Feb.
Available at http://www.nvidia.com/.

Fernando, R., Fernandez, S., Bala, K., and Green-
berg, D. P. 2001. Adaptive shadow maps. In SIG-
GRAPH ’01: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques, ACM
Press, New York, NY, USA, 387–390.

Kim, T.-Y., and Neumann, U. 2001. Opacity shadow
maps. In Proceedings of the 12th Eurographics Workshop
on Rendering Techniques, Springer-Verlag, London, UK,
177–182.

Lokovic, T., and Veach, E. 2000. Deep shadow maps. In
Computer Graphics (Proc. SIGGRAPH), 385–392.

Martin, T., and Tan, T.-S. 2004. Anti-aliasing and con-
tinuity with trapezoidal shadow maps. In Proceedings of
the 2nd EG Symposium on Rendering, Eurographics As-
sociation, Springer Computer Science, Eurographics.

McCool, M., and Du Toit, S. 2004. Metaprogramming
GPUs with Sh. AK Peters.

Reeves, W., Salesin, D., and Cook, R. 1987. Ren-
dering antialiased shadows with depth maps. In Proc.
SIGGRAPH, vol. 21, 283–291.

Stamminger, M., and Drettakis, G. 2002. Perspective
shadow maps. In SIGGRAPH ’02: Proceedings of the 29th
annual conference on Computer graphics and interactive
techniques, ACM Press, New York, NY, USA, 557–562.

Williams, L. 1978. Casting curved shadows on curved
surfaces. In Proc. SIGGRAPH, vol. 12, 270–274.

Williams, L. 1983. Pyramidal parametrics. In Computer
Graphics (SIGGRAPH ’83 Proceedings), 1–11.

Wimmer, M., Scherzer, D., and Purgathofer, W.
2004. Light space perspective shadow maps. In Proceed-
ings of the 2nd EG Symposium on Rendering, Eurograph-
ics Association, Springer Computer Science, Eurograph-
ics.


